Dissolution of composition B detonation residuals.

نویسندگان

  • J H Lever
  • S Taylor
  • L Perovich
  • K Bjella
  • B Packer
چکیده

Composition B (Comp B) detonation residuals pose environmental concern to the U.S. Army because hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a constituent, has contaminated groundwater near training ranges. To mimic their dissolution on surface soils, we dripped water at 0.51 ml/h onto individual Comp B particles (0.1-2.0 mg) collected from the detonation of 81-mm mortars. Analyses of the effluent indicate thatthe RDX and 2,4,6-trinitrotoluene (TNT) in Comp B do not dissolve independently. Rather, the relatively slow dissolution of RDX controls dissolution of the particle as a whole by limiting the exposed area of TNT. Two dissolution models, a published steady-flow model and a drop-impingement model developed here, provide good agreementwith the data using RDX parameters for time scaling. They predict dissolution times of 6-600 rainfall days for 0.01-100 mg Comp B particles exposed to 0.55 cm/h rainfall rate. These models should bracket the flow regimes for dissolution of detonation residuals on soils, but they require additional data to validate them across the range of particle sizes and rainfall rates of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مطالعه عددی تاثیر موانع مختلف بر پیشگیری از انفجار سمپاتیک در ماده منفجره Comp-B

In this paper, the sympathetic detonation is studied. In this type of detonation, the shock wave of an explosive by passing through a neutral environment (gap) induces the detonation in the second explosive. The study of this phenomenon is important to the safety of the ammunition depot and their transportation. In the present study, the sympathetic detonation in Comp-B has been studied. In thi...

متن کامل

Effect of Temperature on Detonation Propagation in Composition B

Composition B is a melt-castable explosive consisting of RDX crystals in a TNT matrix. At elevated temperatures, the TNT can flow or even melt, which affects the particle distribution and therefore the detonation propagation. To study this phenomenon, rate stick experiments were conducted at ambient conditions, at temperatures below the TNT melt, and at temperatures above the TNT melt. We field...

متن کامل

Characteristics of Composition B particles from blow-in-place detonations.

We sampled residues from high-order and low-order blow-in-place detonations of mortars and projectiles filled with Composition B (Comp B), a TNT and RDX mixture. Our goals were to (1) characterize the types of explosive particles, (2) estimate the explosive 'footprint' for different munitions, and (3) estimate the mass of Comp B remaining after each detonation. The aerial deposition of Comp B p...

متن کامل

Dissolution kinetics of high explosives particles in a saturated sandy soil.

Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher...

متن کامل

Statistical Analysis of the Hydrogeochemical Evolution of Groundwater in Alluvial Aquifer of Arak Mighan Playa, Markazi Province, Iran

This paper presents results of hydro-chemical processes controlling groundwater chemical composition, using an integrated application of hierarchical cluster analysis and factor analysis of a major ion data set of groundwater from Mighan playa aquifer. Cluster analysis classified samples into four clusters(A, B, C and D) according to their dominant chemical composition: cluster A (dominant comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 39 22  شماره 

صفحات  -

تاریخ انتشار 2005